Measurement & Quality model to support Software Evolution

Naji Habra - PRECISE Research Group
Talk Overview

• Quality models – Empirical Studies – Measurement: WHY?

• Ongoing projects: Research Axes
 • Fundamental issues: validity of measurement methods
 • Qualities at the “design model” level
 • Quality of Open Source Systems: Evolvability …

• Potential contributions to the IAP
Quality models – Empirical Studies – Measurement: WHY?

- Maturity of the discipline as an “engineering” (Principles, Laws …)
 - The need for quantification
 - The need for well-founded measurement methods
 - The need for validation

- Example
 - “Software intensive systems are among the most complex artifacts ever built …………………… reduce complexity”
 - Complexity ?
 - Reduction ?
On going research- 1 : Fundamental issues

• Long-term research
 • Framework for measurement (Ontology…)
 • Complete validation schema

• Mid-term
 • Validity issues (Critical studies of some existing « measurement »)
 • Theoretical validity : measuring what is supposed to be
 • Empirical validity
 • Case studies : CCN / Size / O.O. metrics suite

• Short term : opportunistic empirical studies
 • Following the evolution (degradation…) of some systems
 • …
On going research- 1 : Fundamental issues

- Example : Validity of a “complexity” measurement (CCN)
 - At the definition level
 - the model(s) used / the artifact being measured
 - the scale
 - the additivity
 - At the use level
 - the context of use : Fortran → Java
 - the thresholds
 - the prediction : testability / maintainability /…/ effort
 - utilization as measurement of “size”
 - At the implementation level
 - different tools → different “numbers”
On going research- 2 : Quality the “design” model level

• The idea
 • Take into account different abstraction levels
 (the different “models” as first-class citizens)
 • Measure as early as possible
 • → “quality model” *
 • Ex distinction
 qualities of a model “per se” < > “as an abstraction of”

• * Attributes to be measured and their relationship ➔ Quality model
 • “model for quality” < > quality of models
On going research- 2 : Quality the “design” model level

- Quality attributes of the software with different status:
 - Size
 - Maintainability?
- The “design” is classically seen as the “design” of the code
On going research- 2 : Quality the “design” model level

Consider the “design model”

- design diagram(s) as a *product by itself*:
 - ex. Readability..
- “design” as an *abstraction/representation* of the “code” artifact
 - Ex: complexity
 - preservation of the “same” complexity (in which condition ???)
 - “complexity of the design predict complexity of the code (which prediction ???)
- \{ “design” & “code” & … \} as a whole *composite* artifact
On going research- 2 : Quality the “design” model level

- Different kinds of “quality attributes”
- Investigate the “derivation” relationship \rightarrow (prediction / preservation…)

Model

Software

Model_1 \rightarrow Model_2 \rightarrow Model_3

Req \rightarrow Design \rightarrow Code

$\text{mapping} \rightarrow \text{Numbers}$
FP6 Strep Project QUALOSS

8 Partners:

- Precise (Univ. Namur)
- Fraunhofer IESE (Kaiserslautern)
- URJC (Univ. Madrid)
- Merit – (Univ. Maastricht)

Goal: build & evaluate a “quality model” for OSS

Focus: two qualities: Evolvability & Robustness
On going research- 3 : Open & Free Source Systems

- Iterative elaboration & empirical validation based on the methodology: “G.Q.M.” (Basili et al)
 - definition of the properties - the intended use
 - operational definition
 - propose some measurements
 - Validate / Refine

Goal
- operational definition

Questions
- propose some measurements

Metrics
- Validate / Refine
On going research- 3 : Open & Free Source Systems

• Iterative elaboration of a “quality model” for “evolvability”
 • First definition of “evolvability”
 • = “ability of an F/OSS project to deliver useful product (…) over an extended period of time”
 • Identify (potential) basic qualities
 • readability (…) / testability / project maturity (…)
 • Identify measurement methods
 • Built a first model
 • Test – Validate – Calibrate (through empirical studies)

• !!! Large view :
 combine “product” + “process (community)” data
IAP connections

• WP 2 - Topic 3

• Assessing the effect of model refactoring on the quality of models.

• Assessing the effect of model refactoring on the quality
Quality & Evolution

Linguistic issues:
- semantics attributes preservation
- consistency
- representativeness
- structural properties: traceability
Questions related to the evolvability

1st kind of questions (the evolvability ?)
- which “attributes” of which “artefacts” contributes to it
- how to measure each of them (existing/new measures)
- how this contributes to the “evolvability” of the whole
- how to measure this “global evolvability”

Towards a “model for the evolvability”
Questions related to the evolvability

- 2nd kind of questions (the evolution → Qualities ?)
 - Impact of evolution on “qualities” attributes
 empirical studies of some of the laws of evolution
 ex. restructuring / patterns /… impact
 - The role of “models” : how models evolve (co-evolve)
 which artifact(s) to study
 - What about « incomplete » representation ????

Diagram:

1. **Requirement**
 - Use Case
 - ...

2. **Design**
 - Structural Mode
 Ex. « Class Diag »
 - Behavioral Model
 Ex: state trans diag
 - Concerns Mode
 Ex. Features Diag
 - ...

3. **Code**
 - Packages
 - Classes
 - …
Potential use of “measurement” for evolution

• The need of precise, consensual, operational definitions for the properties (*) & measurement methods accepted by the community

• the IAP as an OPPORTUNITY

• (*) Potential properties to define / choose / track
 • Complexity (at different levels …..)
 • Well-structuredness/ ill-structuredness
 • Bad smells – patterns use – anti pattern use
 • …
Thank you!

Any questions?