Business IT-alignment: introduction

• IT must respond to business (economic) needs
 → business value of IT
 • E.g. ERP
 • IT plays a central role in e-business
 • IT can be used as a strategic tool to differentiate from competitors and to create new business opportunities / models
 • E.g. Amazon, Google, …
Business environment dynamicity

Example: eBusiness in general, travel (internet, mobile), software, ...
Business / Software co-evolution

• Constant adaptation of business and supporting IT and software is required

→ alignment of the business and IT layer
 • adapt IT to follow changes in business strategy (top-down)
 • Is our IT adequate for our business?
 • What impact do business decisions have on our IT?
 • What is the business impact of dropping a software application?
 • ...
 • how to rely on current IT capabilities to imagine and realise new business opportunities (bottom-up)
A Framework for model-based Business – IT alignment

- Concepts to define an enterprise specific enterprise architecture
 - Set of models / viewpoints / abstraction levels, views, ...
 - E.g. Strategy, business model, business process, software
 - Set of languages for each of them
- Methods and mechanisms to relate languages and models (mapping rules, guidelines, ...)
- Guidelines and mechanisms for evaluating and improving alignment (among the different levels and views)
- Supporting tools (metadone)
Model-based approach: Past and current work

- Strategy
 - Porter strategies
 - Holbrook value theory
 - Mintzberg
 - SWOT

- Value / Business model
 - e3value
 - eBMO
 - Weill & Vitale Business Schematics

- Business / Enterprise processes
 - IEM
 - EEML
 - GRAI
 - CIMOSA
 - BPMMN
 - UEML 1.0
 - UEML 2.0
 - ARIS EPC

- IT requirements
 - Albert II
 - Volere, PSS-05
 - UML
Status

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Application domain</th>
<th>Formalisation of mappings</th>
<th>Method / Guidelines for mappings</th>
<th>Supporting tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>Manufacturing</td>
<td>Yes</td>
<td>Partial</td>
<td>Partial</td>
</tr>
<tr>
<td>[2]</td>
<td>Enterprise modelling (generic)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>[3]</td>
<td>eBusiness</td>
<td>No</td>
<td>Yes</td>
<td>Partial</td>
</tr>
<tr>
<td>[4]</td>
<td>Hospital</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[5]</td>
<td>Enterprise modelling (generic)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>[6]</td>
<td>eBusiness</td>
<td>No</td>
<td>Partial</td>
<td>No</td>
</tr>
</tbody>
</table>
References

• [6] Claire Lobet, Michaël Petit, FUNDP Computer Science Courses INFO 2305, IHDC 2214, INNO 3137)