Automata-based Representations of Arithmetic Sets

Bernard Boigelot

Université de Liège

Introduction

Motivation: Representing the sets of configurations handled during symbolic state-space exploration.

For systems using integer variables, these sets are often combinations of

- linear constraints, and
- periodicities;

Problem: Formula-based representations do not provide efficient algorithms for

- computing disjunctions, and
- testing inclusion.

Solution: Automata-based representations.

Automata-based Representations of Sets

Principles:

- Data values are encoded by words over a finite alphabet;
- The encoding of a set S is thus a language L(S);
- \bullet A finite-state machine that accepts L(S) is a representation of S.

Advantages:

- Closed under Boolean operators, projection, Cartesian product, ...;
- Simple manipulation algorithms;
- Canonical form;
- Sufficiently expressive for many data domains.

Number Decision Diagrams

Principles:

- The domain is \mathbb{Z}^n , with n > 0;
- Integers are encoded in a base r > 1, most or least significant digit first;
- Negative numbers are encoded by their r's complement;
- ullet The number of digits p in the encodings of z is not fixed, but must satisfy

$$-r^{p-1} \le z < r^{p-1}$$
.

Examples:

$$Enc_2(12) = 0^+1100$$

 $Enc_2(-7) = 1^+001$.

- Vectors are encoded by reading repeatedly one digit for each component, in a fixed order;
- The component digits can be combined in several ways.

Synchronous encoding:

$$Enc_2((-4,6,3)) = (1,0,0)^+(1,1,0)(0,1,1)(0,0,1)$$

Serial encoding:

$$Enc_2((-4,6,3)) = (100)^+110011001.$$

• An NDD representing a set $S \subseteq \mathbb{Z}^n$ is an automaton accepting all the encodings of all the elements in S.

From Linear Constraints to NDDs

An NDD representing the set

$$\{\vec{x} \in \mathbf{Z}^n \mid \vec{a}.\vec{x} = b\}$$

can be constructed by

- associating to each state q an integer $\beta(q)$ such that any path ending in q reads a solution of $\vec{a}.\vec{x} = \beta(q)$;
- starting the construction from a state q_F such that $\beta(q_F) = b$;
- applying a backward propagation rule:

$$\beta(q) = \frac{\beta(q') - \vec{a}.\vec{d}}{r}$$

Example: 2x - y = -4

NDDs: Expressiveness

Theorem: A set $S \subseteq \mathbb{Z}^n$ is representable by an NDD in a base r > 1 iff it can be defined in the first-order theory $\langle \mathbf{Z}, +, \leq, V_r \rangle$, where $V_r(z)$ is the greatest power of r that divides z.

Theorem: A set $S \subseteq \mathbb{Z}^n$ is representable by an NDD in any base r > 1 iff it can be defined in the first-order theory $\langle \mathbf{Z}, +, \leq \rangle$ (i.e., Presburger arithmetic).

Automata-based representations of sets thus provide a simple algorithm for deciding Presburger arithmetic.

From Integers to Reals

Motivation: Representing the sets of configurations of systems with mixed integer and real variables (e.g., timed systems).

Idea: Real numbers can be encoded as infinite words over an alphabet composed of

- \bullet r digits: 0, 1, ..., r-1, and
- a separator ★ between the integer and the fractional parts.

Examples:

$$Enc_2(3.5) = 0^+11 * 1(0)^{\omega} \cup 0^+11 * 0(1)^{\omega}$$

 $Enc_2(-4) = 1^+00 * (0)^{\omega} \cup 1^+011 * (1)^{\omega}$.

Real Vector Automata

- Vectors can be encoded synchronously or serially, assigning the same number of digits to the integer part of each component;
- A Real Vector Automaton (RVA) representing a set S is a Büchi automaton that accepts L(S).
- The sets that are RVA-representable in a base r > 1 are those definable in the first-order theory $\langle \mathbf{R}, \mathbf{Z}, +, \leq, X_r \rangle$, where X_r is a base-dependent predicate.

Example:

Implementing RVA

Problem: Manipulating Büchi automata is inefficient, especially if automata need to be complemented.

Solution: Use only weak deterministic Büchi automata.

Theorem: The sets that are definable in $\langle \mathbf{R}, \mathbf{Z}, +, \leq \rangle$ can be represented by weak deterministic Büchi automata (in any base r > 1)

Advantages:

- In practical applications, weak deterministic RVA are as easy to handle as NDDs;
- There exists a canonical form for weak deterministic RVA.

Number Automata in Verification

Problem: Computing the set of reachable configurations of a model with integer and/or real variables.

Solution:

- Represent the sets to be handled by NDDs or RVA;
- Use acceleration methods for computing infinite sets of reachable configurations in finite time.

Two classes of acceleration methods have been developed:

- specific techniques, based on properties of
 - the data domain under study
 - the operations performed on variables, and
- generic techniques.

Specific Acceleration Techniques

Idea: Compute at once the set of configurations that can be reached by iterating a control cycle.

Definition: Given a control cycle σ , the meta-transition associated to σ is a transformation equivalent to

$$\sigma^* = Id \cup \sigma \cup \sigma^2 \cup \sigma^3 \cup \dots$$

By adding meta-transitions to the transition relation of a model, one speeds up its state-space exploration.

Problems:

- Given σ , deciding whether σ^* can be applied to represented sets;
- Computing a representation of $\sigma^*(S)$ given σ and a representation of S.

Meta-Transitions and NDDs

Theorem: Given a transformation

$$\sigma: \mathbf{Z}^n \to \mathbf{Z}^n: \vec{x} \mapsto A\vec{x} + \vec{b},$$

where $A \in \mathbb{Z}^{n \times n}, b \in \mathbb{Z}^n$, one can decide whether its closure preserves the NDD-representable nature of sets (in a given base, or in any base).

Principles:

- ullet The decision procedure relies on the eigenvalues of A;
- The criterion can be decided using simple integer arithmetic operations;
- The proof is constructive and can be translated into an algorithm for computing $\sigma^*(S)$;
- The same criterion becomes sufficient for transformations guarded by a system of linear constraints.

Application: The Lift Controller

The system is composed of

- a control panel that prompts the user for a floor number,
- a motor controller that moves the car in the appropriate direction.

The number of floors N can be

- specified in the model (the number of reachable configurations is then $O(N^2)$),
- made infinite (i.e., there is no top floor),
- turned into a parameter (the initial set of configurations then contains all the values of N greater than 1).

Lift Controller: Simple-PROMELA Model

```
int c = 1, g = 1, a = 0, N = 10;
process motor {
  do
     :: go_up: atomic { a == 1 \rightarrow up: a = 0; c = c + 1 }
     :: go_down: atomic { a == 2 -> down: a = 0; c = c - 1 }
  od
process control {
  do
    :: too_low: atomic { c < g -> a = 1 } ; raise: a == 0
    :: too_high: atomic { c > g -> a = 2 } ; lower: a == 0
    :: atomic { c == g ->
         do
           :: low: g < N \rightarrow incr: g = g + 1
           :: high: g > 1 -> decr: g = g - 1
           :: break
         od }
    :: assert c >= 1
    :: assert c <= N
  od;
  meta (low), incr, low;
  meta (high), decr, high
meta (control.too_low, motor.go_up),
      control.raise, motor.up, motor.go_up,
      control.too_low;
meta (control.too_high, motor.go_down),
      control.lower, motor.down, motor.go_down,
      control.too_high;
```

Lift Controller: Runtime Statistics

N	Rel.	Reach.	t_{tot} (s)	Mem. (b)
2	1751	123	8.51	344124
3	1751	175	9.25	397672
4	1751	337	14.17	730296
5	1751	349	13.28	707100
6	1751	402	17.53	888602
7	1751	355	14.36	746420
8	1751	601	23.69	1231180
9	1751	609	20.75	1138864
10	1751	664	26.82	1323048
100	1751	1306	69.78	2579876
1000	1751	1913	140.02	3701240
10000	1751	2684	220.02	5072576
100000	1751	3329	325.06	6283068
1000000	1751	3938	462.04	7399076
∞	849	181	9.91	578332
any	2295	231	57.83	2403828

Lift Controller: Sample LASH run (N = 1000000000)

```
Compilation statistics:
 number of gates
                                     : 0.
                                     : 3.
 number of processes
 number of variables
                                     : 4.
 total number of control locations : 11.
 number of synchronized transitions : 0.
 number of meta-transitions
Translating the transition relation...
   with transitions
                                       : 1647 NDD state(s).
  with synchronised transitions
                                    : 1647 NDD state(s).
  with transitions & meta-transitions : 4017 NDD state(s).
Translating the set of initial states...
   initial set : 218 NDD state(s).
Starting state-space exploration...
   interm. result : 638 NDD state(s), 3 states.
   interm. result: 1044 NDD state(s), 1000000003 states.
   interm. result : 1461 NDD state(s), 399999999 states.
   interm. result: 2709 NDD state(s), 500000005499999997 states.
   interm. result: 4596 NDD state(s), 1500000006499999995 states.
  interm. result: 6409 NDD state(s), 3500000004499999994 states.
   interm. result: 7020 NDD state(s), 6499999997499999999 states.
   interm. result: 7808 NDD state(s), 799999995000000000 states.
   interm. result: 8655 NDD state(s), 899999994000000000 states.
   interm. result: 8658 NDD state(s), 949999993500000000 states.
   interm. result: 8663 NDD state(s), 999999993000000000 states.
Fixpoint reached in 11 step(s).
*** Program validated.
Runtime statistics:
 residual memory : 0 byte(s).
                  : 4344928 byte(s).
 max memory
```

Meta-Transitions and RVA

Goal: Adding meta-transitions to models with a both continuous and discrete transition semantics (such as Hybrid Automata).

Definition: A Linear Hybrid Transformation (LHT) (P, \vec{q}) is a transformation of the form

$$\theta: 2^{\mathbb{R}^n} \to 2^{\mathbb{R}^n}: S \mapsto \left\{ \vec{x}' \in \mathbb{R}^n \mid (\exists \vec{x} \in S) \left(P \begin{bmatrix} \vec{x} \\ \vec{x}' \end{bmatrix} \leq \vec{q} \right) \right\},$$

with $n > 0, P \in \mathbf{Z}^{m \times 2n}$, $\vec{q} \in \mathbf{Z}^m$ and $m \ge 0$.

Properties:

- Any path of a linear hybrid automaton is labeled by a LHT;
- LHT that satisfy a periodicity criterion can be turned into meta-transitions.

Illustration (behavior of a periodic LHT):

Example: the Leaking Gas Burner

Conclusions

- Automata-based representations of arithmetic sets have nice properties;
- They are well suited for several data domains;
- The main limit is the number of variables;
- An implementation is available (LASH).