Automata-based Representations
of Arithmetic Sets

Bernard Boigelot

Université de Liege

Introduction

Motivation: Representing the sets of configurations handled during
symbolic state-space exploration.

For systems using integer variables, these sets are often combinations of

e linear constraints, and

e periodicities;

Problem: Formula-based representations do not provide efficient
algorithms for

e computing disjunctions, and

e testing inclusion.

Solution: Automata-based representations.

Automata-based Representations of Sets

Principles:

e Data values are encoded by words over a finite alphabet;
e The encoding of a set S is thus a language L(S);

e A finite-state machine that accepts L(S) is a representation of S.

Advantages:

e Closed under Boolean operators, projection, Cartesian product, ... ;
e Simple manipulation algorithms;
e Canonical form:;

e Sufficiently expressive for many data domains.

Number Decision Diagrams

Principles:

e The domain is Z", with n > O;

e Integers are encoded in a base » > 1, most or least significant digit
first;

e Negative numbers are encoded by their r's complement;

e The number of digits p in the encodings of z is not fixed, but must
satisfy

Pl <y <L

Examples:

0t1100
11T001.

Enco(12)
EnCQ(—7)

e \Vectors are encoded by reading repeatedly one digit for each
component, in a fixed order;

e [he component digits can be combined in several ways.
Synchronous encoding:

Enco((—4,6,3)) = (1,0,0)7(1,1,0)(0,1,1)(0,0,1)

Serial encoding:

Enc,((—4,6,3)) = (100)T110011001.

e An NDD representing a set S C Z™ is an automaton accepting all the
encodings of all the elements in S.

From Linear Constraints to NDDs

An NDD representing the set
{ e Z" | d.Z = b}

can be constructed by

e associating to each state ¢ an integer (3(¢) such that any path ending
in ¢ reads a solution of a.Z = 3(q);

e starting the construction from a state gp such that g(qgp) = b;

e applying a backward propagation rule:

O

B(¢) —a.d

B(q) =

Example: 2z —y = —4

NDDs: EXpressiveness

Theorem: A set S C Z" is representable by an NDD in a base r > 1 iff it
can be defined in the first-order theory (Z,+,<,V,), where V.(z) is the
greatest power of r that divides z.

Theorem: A set S C Z"™ is representable by an NDD in any base r > 1 iff it
can be defined in the first-order theory (Z,+, <) (i.e., Presburger
arithmetic).

Automata-based representations of sets thus provide a simple algorithm
for deciding Presburger arithmetic.

From Integers to Reals

Motivation: Representing the sets of configurations of systems with mixed
integer and real variables (e.g., timed systems).

Idea: Real numbers can be encoded as infinite words over an alphabet
composed of

e r digits: O, 1, ..., r—1, and

e a separator x between the integer and the fractional parts.

Examples:

0T11x1(0)¥ U0T11%0(1)*
1700 % (0)¥ U 17011 % (1)“.

Enc2(3.5)
Enc>(—4)

Real VVector Automata

e Vectors can be encoded synchronously or serially, assigning the same
number of digits to the integer part of each component;

e A Real Vector Automaton (RVA) representing a set S is a Biichi
automaton that accepts L(S).

e [he sets that are RVA-representable in a base r > 1 are those
definable in the first-order theory (R,Z,+, <, X;), where X, is a
base-dependent predicate.

Z2

Example:
7 A A 7 74
A A A N
7771',177
7 A A 7 74
7 A A 7 74
7 A A 7 74

1

10

(1,0)
(1.1
(1,0)
(1,1)
(0,0) *
(0,1) (L.0)
(0,0) (0,0)
(1,0) \ (0,1

(0,0) (0,1)
1,00 (1,1

A
CHw

(1.1)

*

11

Implementing RVA
Problem: Manipulating Buchi automata is inefficient, especially if
automata need to be complemented.
Solution: Use only weak deterministic Buchi automata.

Theorem: The sets that are definable in (R,Z,+4, <) can be represented by
weak deterministic Buchi automata (in any base r > 1)

Advantages:

e In practical applications, weak deterministic RVA are as easy to handle
as NDDs;

e [here exists a canonical form for weak deterministic RVA.

12

Number Automata in Verification

Problem : Computing the set of reachable configurations of a model with
integer and/or real variables.

Solution :

e Represent the sets to be handled by NDDs or RVA;

e Use acceleration methods for computing infinite sets of reachable
configurations in finite time.

Two classes of acceleration methods have been developed:

e specific techniques, based on properties of

— the data domain under study
— the operations performed on variables, and

e generic techniques.

13

Specific Acceleration Techniques

Idea: Compute at once the set of configurations that can be reached by
iterating a control cycle.

Definition: Given a control cycle o, the meta-transition associated to o is
a transformation equivalent to

cF=IdUcUc?Uoc3U...

By adding meta-transitions to the transition relation of a model, one
speeds up its state-space exploration.

Problems:

e Given o, deciding whether ¢* can be applied to represented sets;

e Computing a representation of ¢*(S) given o and a representation of S.

14

Meta-Transitions and NDDs

Theorem: Given a transformation
oI 7" F— AT+,

where A € Z"*" b € Z™, one can decide whether its closure preserves the
NDD-representable nature of sets (in a given base, or in any base).

Principles:

e T he decision procedure relies on the eigenvalues of A;

e [he criterion can be decided using simple integer arithmetic
operations;

e T he proof is constructive and can be translated into an algorithm for
computing o*(S);

e [he same criterion becomes sufficient for transformations guarded by
a system of linear constraints.

15

Application: The Lift Controller

The system is composed of

e a control panel that prompts the user for a floor number,

e a2 motor controller that moves the car in the appropriate direction.

The number of floors N can be

e specified in the model (the number of reachable configurations is then
O(N?)),

e made infinite (i.e., there is no top floor),

e turned into a parameter (the initial set of configurations then contains
all the values of N greater than 1).

16

Lift Controller: Simple-PROMELA Model

int c=1, g=1, a =0, N = 10;

process motor {

do
:: go_up: atomic { a == 1 -> up: a=0; c=c+11}
:: go_down: atomic { a == 2 -> down: a =0; c=c -1}
od
+
process control {
do
:: too_low: atomic { c < g —>a=1 } ; raise: a == 0
:: too_high: atomic { ¢ > g ->a =21} ; lower: a == 0
atomic { ¢ == g ->
do
low: g < N -> incr: g=g + 1
:: high: g > 1 -> decr: g=g -1
:: break
od }
assert c >= 1
:: assert ¢ <= N
od;
meta (low), incr, low;
meta (high), decr, high

¥

meta (control.too_low, motor.go_up),
control.raise, motor.up, motor.go_up,
control.too_low;

meta (control.too_high, motor.go_down),
control.lower, motor.down, motor.go_down,
control.too_high;

Lift Controller: Runtime Statistics

N Rel. | Reach. | ti: (s) | Mem. (b)
2| 1751 123 8.51 344124

3| 1751 175 9.25 397672

4 | 1751 337 14.17 730296
511751 349 13.28 707100

6| 1751 402 17.53 888602

7| 1751 355 14.36 746420

8 | 1751 601 23.69 1231180

9| 1751 609 | 20.75 1138864

10 | 1751 664 26.82 1323048

100 | 1751 1306 69.78 2579876
1000 | 1751 1913 | 140.02 3701240
10000 | 1751 2684 | 220.02 5072576
100000 | 1751 3329 | 325.06 6283068
1000000 | 1751 3938 | 462.04 7399076

00 849 181 9.91 578332
any | 2295 231 57.83 2403828

Lift Controller: Sample LASH run (N = 1000000000)

Compilation statistics:

number of gates : 0.

number of processes : 3.

number of variables : 4.

total number of control locations : 11.

number of synchronized transitions : O.

number of meta-transitions : 4.

Translating the transition relation...

with transitions : 1647 NDD state(s).
with synchronised transitions : 1647 NDD state(s).

with transitions & meta-transitions : 4017 NDD state(s).
Translating the set of initial states...
initial set : 218 NDD state(s).
Starting state- space exploration..
interm. result : 638 NDD state(s) 3 states.
interm. result : 1044 NDD state(s), 1000000003 states.
interm. result : 1461 NDD state(s), 3999999999 states.
interm. result : 2709 NDD state(s), 500000005499999997 states.
interm. result : 4596 NDD state(s), 1500000006499999995 states.
interm. result : 6409 NDD state(s), 3500000004499999994 states.
interm. result : 7020 NDD state(s), 6499999997499999999 states.
interm. result : 7808 NDD state(s), 7999999995000000000 states.
interm. result : 8655 NDD state(s), 8999999994000000000 states.
interm. result : 8658 NDD state(s), 9499999993500000000 states.
interm. result : 8663 NDD state(s), 9999999993000000000 states.
Fixpoint reached in 11 step(s).
**x Program validated.
Runtime statistics:
residual memory : O byte(s).
max memory : 4344928 byte(s).

Meta-Transitions and RVA

Goal: Adding meta-transitions to models with a both continuous and
discrete transition semantics (such as Hybrid Automata).

Definition: A Linear Hybrid Transformation (LHT) (P,q) is a
transformation of the form

g . oR" _, oR" . SH{@”ER”KE@’ES)(P[;] gq)},
with n > 0,P € ZMm*2n 7e Z™ and m > 0.

Properties:

e Any path of a linear hybrid automaton is labeled by a LHT;

e LHT that satisfy a periodicity criterion can be turned into
meta-transitions.

20

Illustration (behavior of a periodic LHT):

B ¢4 ({Zo})
il 0°({Zo})
B 62({70})

"~ 0({Zo})

21

Example: the Leaking Gas Burner

r>30 — z:=0

| &\\

T

0 30 ' 60 ' 90

22

Conclusions

Automata-based representations of arithmetic sets have nice
properties;

They are well suited for several data domains;
The main limit is the number of variables;

An implementation is available (LASH).

23

