Verifying Infinite-State Systems with Automata

Axel Legay
Université de Liège
Introduction

Goal

- Verifying Reachability Properties (mutual exclusion, ...) of Infinite-State systems.

Solution

1. Encode the reachability property as a set of states.

2. Compute the set of reachable states ϕ.

3. Use set-based operations (union, intersection, ...) to test whether ϕ satisfies the property.
Computing the Reachable Set of States

Problems:

1. **Infinite sets** of states must be represented by **finite structures**.

2. Classical operations like union, intersection, and testing inclusion must be computable in an efficient way.

3. **Infinite sets** of states must be computable in **finite time**.

 “How to compute the effect of an **unbounded number** of applications of the transition relation?”

Solution: The Regular Model Checking approach.
The Regular Model Checking Framework

[Pnueli et al. 97], [Boigelot, Wolper, 98], [Bouajjani, Jonsson, Nilsson, Touili, 00]

A Solution to Problems 1 and 2.

The system is given by a triple $M = (\Sigma, I, R)$, where

- Σ is a finite alphabet, over which states are encoded as finite-words;
- I is a set of initial states encoded by a finite-word automaton A_I;
- R is the transition relation represented either by a finite-word transducer T (automaton over $\Sigma \times \Sigma$), or by transformations on automata.

Don’t think of automata as programs, but as a Symbolic representation of sets of states/transitions that has a very simple semantics.
Example 1: Parametric Systems (1)

- Systems composed of an unbounded number of identical finite-state processes. This number is fixed during an execution.

- Each state is encoded by a finite word.

- Each letter of the word encodes the current state of a process.

- Sets of states are represented by finite-word automata.

- Linear and ring topologies can be encoded in this framework.
Consider a parametric token ring where each process can be in two states: N when it wants the token and T when it has the token,

\begin{itemize}
 \item $TNNNN$ is a state in where the first process has the token.
 \item $I = T N^*$ models all possible states in where the first process has the token.
 \item $T = (N, N)^*(T, N)(N, T)(N, N)^*$ is a regular relation that represents the token passing from a process to its right neighbor.
\end{itemize}
Parametric Systems (3)

Transducer T for $(N, N)^* (T, N) (N, T) (N, N)^*$:

Transducer for $T^2 = T \circ T$:
Parametric Systems (3)

Transducer for $T^* = \bigcup_{i \geq 0} T^i$:

Automaton for $T^*(I)$:
Example 2: Integer systems

- For arithmetic, integers are encoded in binary, using 2’s complement for negative numbers.
- All possible encodings are considered, i.e. 01, 001, ...
- For vectors, same-position bits of the components are read simultaneously.

With this encoding all Presburger definable relations (and more) are representable [Boigelot, 99].
Arithmetic transducers: Example

Transducer for \((x, x + 1) \cup (x, x)\):
Beyond Regular Model Checking

Other applications include

- Communication protocols.
- Recursion.
- Heap Analysis.

Next challenge.

- An important class cannot be encoded: Timed Systems.

- Solution: using infinite words and Büchi automata as a regular representation of sets of states.
Omega-Regular Model checking

- We aim at using Büchi automata as a representation for sets of states.

- The main difficulty is that there are many operations which are not easily applied to the full class of Büchi automata (example: complementation).

- We thus restrict ourself to a convenient sub-class of infinite word languages, those accepted by weak deterministic Büchi automata [Boigelot, Legay, Wolper, 04].

- Weak deterministic Büchi automata behave like finite-word automata.
The Omega Regular Model Checking Framework

A system is a triple $S = (\Sigma, I, R)$ where

- Σ is a finite alphabet, over which the system states are encoded as infinite words;

- I is a set of initial states represented by a weak deterministic automaton A_I;

- R is a transition relation represented by a weak deterministic automaton over $\Sigma \times \Sigma$, i.e. a weak deterministic transducer T.
(\(\omega\)-)Regular Model Checking Problems

- The goal is to compute \(T^* = \bigcup_{i \geq 0} T^i\). This provides a solution to Problem 3.

Two main approaches have been followed.

- **Specific techniques** that provide a solution for a specific class of systems.

- **Generic techniques** that operate directly on the automata-based representation without any assumption on the system being considered.

Next slides: The Generic Technique developed at Liège.
The Generic Techniques developed at Liège

Computing $T^* = \bigcup_{i \geq 0} T^i$ is equivalent to compute the limit of

T, T^2, T^3, \ldots,

Approach:

- **Sampling:** Only consider selected powers of the sequence to be iterated.

- **Increment detection and extrapolation:** Proceed by comparing successive REDUCED automata in a sequence; identifying the difference between these in the form of an “increment”, and extrapolating the repetition of this increment.

- **Preciseness check:** Check algorithmically whether the extrapolated sequence is “exact”.
Increments: Example

T^2:

T^4:

T^8:

T^{16}:

Detecting increments

Common parts between $T_0^{s_i}$ and $T_0^{s_i+1}$ can be identified by

- a *forwards equivalence relation* $E_f^{s_i}$ between states, based on equality of accepted languages, and

- a *backwards equivalence relation* $E_b^{s_i}$, based on isomorphism from the initial state.

This detection step is propagated to several increments.
Extrapolation: Example

Extrapolation = LOOP!

Increment \(\{3,8\} \) is repeated an unbounded number of times.
Experiments (1)

The techniques have been implemented as a library of the LASH tool, and used to compute the reachable set of states of several systems including

- Some parametric systems (bakery, Szymanski, Dijkstra, Burns, ...).

- Some communication protocols (alternating-bit protocol, ...).

- Some systems manipulating integer variables (lift, ...).

- Some hybrid systems (leaking gas burner, IEEE1394 root contention protocol).
Experiments (2)

Leaking gas burner:

\[\dot{x} = 1, \dot{y} = 1, \dot{z} = 1 \]
\[x \leq 1 \rightarrow x := 0 \]
\[x \geq 30 \rightarrow x := 0 \]
\[L \neg L \dot{x} = 1, \dot{y} = 1, \dot{z} = 0 \]

\(T \) has 2406 states, \(T(A_I) \) has 676 states.
Experiments (3)

| Relation | $|T_0|$ | $|T^*_0|$ | Max $|T^i_0|$ |
|--|-------|--------|----------|
| $(x,x + 1)$ | 3 | 3 | 11 |
| $(x,x + (1/2))$ | 9 | 15 | 38 |
| $(x,x + (1/7))$ | 10 | 40 | 87 |
| $(x,x + 73)$ | 14 | 75 | 933 |
| $(((x,y),(x+2,y-1)) \cup ((x,y),(x-1,y+2))) \cap \mathbb{N}^2 \times \mathbb{N}^2$ | 19 | 70 | 1833 |
| $(x,y),(x+2,y-1) \cup (x,y),(x-1,y+2)$ | 21 | 31 | 635 |
| $\cup ((x,y),(x+1,y+1))) \cap \mathbb{N}^2 \times \mathbb{N}^2$ | | | |
| $(((w,x,y,z),(w+1,x+2,y+3,z+4))$ | 91 | 251 | 2680 |
Other Applications.

Other applications of (ω-)regular model checking include:

- The verification of `heterogenous systems`. [Bardin, Finkel, 06].

- The verification of `temporal properties` [Bouajjani, Legay, Wolper, 04].

- Geometrical applications [Cantin, Legay, Wolper, 07].

- Handling `Open Systems` [de Alfaro, Faella, Legay 05, 06, 07].
Extensions.

• There are many cases where T^* is not regular.

Solutions:

• Going beyond regular representations [Fisman, Pnueli, 01].

• Using other regular representations
 – Tree Regular Model Checking (see [Abdulla, D’orso, Legay, Rezine, 05, 06] [Bouajjani, Haberhmel, Vojnar, 05, 06]).
 – Applications: communication protocols, XML documents, ...