
VUB
15 November 2007
Brussel, Belgium

Multi-Paradigm Modelling,

and the quest for tool support

Hans Vangheluwe

Modelling, Simulation and Design Lab (MSDL)
School of Computer Science, McGill University, Montr�eal, Canada

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 1

Overview

1. Model Everything !

2. Multi-Paradigm Modelling by example

3. Building CAMPaM tools e�ectively

4. Challenges

5. Conclusions

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 2

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 3

Modelling Variety of Complex Systems . . .

Need to be(Multi-Paradigm) modelled

� at most appropriatelevel of abstraction

� in most appropriateformalism(s)

� with transformations as �rst-class models

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 4

Available Information, Questions to be Answered, . . .

) choice of Abstraction Level/Formalism

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 5

Need Multiple Formalisms: Power Window

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 6

The Model Couples di�erent Formalisms

www.mathworks.com/products/demos/simulink/PowerWind ow/html/PowerWindow1.html

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 7

Multiple (consistent !) Views
(in 6= Formalisms)

(work by Esther Guerra and Juan de Lara)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 8

View: Runtime Diagram

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 9

View: Events Diagram

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 10

View: Protocol Statechart

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 11

The need for (modelled) Transformations
Model/Analyze/Simulate Tra�c Networks

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 12

An un-timed Tra�c model

0
bot_W2E

0
turn1

0
to_N_or_W

0
turn2

0
bot_N2S

2
cars

1
bot_CAP 1

turn1_CAP

1
top_CAP

1
turn2_CAP

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 13

Modelling Tra�c's Semantics

� choices: timed, un-timed, . . . (level of abstraction)

� denotational : map onto known formalism (TTPN, PN)
. . . good for analysis purposes

� operational : procedure to execute/simulate model
. . . may act as a reference implementation

� note: need toprove consistency between denotational and
operational semantics if both are given !

� recent work (submitted to FASE): automatically generate
denotational from operational semantics de�nition

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 14

Modelling Tra�c's (un-timed) semantics
in terms of Petri Nets

� need a (meta-)model ofTra�c

� need a (meta-)model ofPetri Net s

� need a model of the mapping:Tra�c) Petri Net

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 15

Input to semantic mapping transformation

0
bot_W2E

0
turn1

0
to_N_or_W

0
turn2

0
bot_N2S

2
cars

1
bot_CAP 1

turn1_CAP

1
top_CAP

1
turn2_CAP

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 16

The Petri Net describing its behaviour
obtained by automatic transformation

bot_W2E
0

turn1
0

to_N_or_W
0

turn2
0

bot_N2S
0

cars
2

bot_W2E_dep

top_S2W_dep

bot_N2S_dep

top_arr
bot_N2S_arr

bot_W2E_arr

top_S2N_dep

bot_CAP
1

turn1_CAP
1

top_CAP
1

turn2_CAP
1

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 17

Static Analysis of the Transformation Model

The transformation (speci�ed by a Graph Grammar) model must
satisfy the following requirements (of semantic mapping):

� Termination:
the transformation process is�nite

� Convergence/Uniqueness:
the transformation results in asingletarget model

� Syntactic Consistency:
the target model must beexclusivelyin the target formalism

These properties can often (but not always)
be statically checked/proved.

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 18

More transformations:
Liveness Analysis on Coverability Graph

[turn1_CAP, cars(2), bot_CAP, top_CAP, turn2_CAP]

[turn1_CAP, cars, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

[cars, turn1, bot_CAP, top_CAP, turn2_CAP]

bot_W2E_dep

[turn1_CAP, cars, bot_CAP, turn2_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2, cars, bot_CAP, top_CAP]

top_S2W_dep

[turn1_CAP, cars, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

[turn1_CAP, turn2, bot_W2E, top_CAP]

bot_W2E_arr

[turn2, turn1, bot_CAP, top_CAP]

bot_W2E_dep

[turn1_CAP, turn2, bot_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2_CAP, bot_N2S, to_N_or_W]

bot_N2S_arr

[turn1_CAP, turn2, top_CAP, bot_N2S]

top_S2W_dep

bot_N2S_dep

bot_N2S_dep

top_S2N_dep

top_S2N_dep

[turn1, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

top_arr

[turn1_CAP, bot_W2E, turn2_CAP, to_N_or_W]

bot_W2E_arr

[turn1, bot_CAP, turn2_CAP, to_N_or_W]

bot_W2E_dep

top_S2W_dep

top_S2N_dep

top_S2W_dep

top_S2N_dep

top_S2N_dep

[turn1, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

top_arr

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 19

Conservation Analysis

1.0 x[turn1_CAP] + 1.0 x[turn1] = 1.0

1.0 x[cars] + 1.0 x[bot_W2E] + 1.0 x[turn1] +
1.0 x[to_N_or_W] + 1.0 x[turn2] + 1.0 x[bot_N2S] = 2.0

1.0 x[top_CAP] + 1.0 x[to_N_or_W] = 1.0

1.0 x[turn2_CAP] + 1.0 x[turn2] = 1.0

1.0 x[bot_CAP] + 1.0 x[bot_W2E] + 1.0 x[bot_N2S] = 1.0

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 20

The Big Picture: Transform Everything!

neglect tim
e

Traffic (un-timed)

Place-Transition Petri Nets

Coverability Graph

describe semantics
by mapping onto

compute all
possible behaviours

simulate

simulate

analyze:
reachability,
coverability, ...

describe semantics

by mapping onto

simulate

DEVS

map onto

map onto Timed Transition Petri Nets

de
sc

rib
e

se
m

an
tic

s

by
 m

ap
pi

ng
 o

nt
o

simulate
analyze

describe semantics
by mapping onto

TINA

simulate
analyze

pythonDEVS

simulate

DEVSJava

simulate

TimedTraffic

simulate

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 21

Domain-Speci�c (Visual) Modelling

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 22

Domain-Speci�c Modelling Example

NATO's Sarajevo WWTP
www.nato.int/sfor/cimic/env-pro/waterpla.htm

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 23

DS(V)M Environment

www.hemmis.com/products/west/

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 24

DS(V)M Example: smart phones,
the application

MetaEdit+ (www.metacase.com)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 25

DS(V)M Example: smart phones,
the Domain-Speci�c model

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 26

Why DS(V)M ?
(as opposed to General Purpose modelling)

� match the user's mental model of the problem domain

� maximally constrain the user (to the problem at hand)
) easier to learn
) avoid errors

� separate domain-expert's work
from analysis/transformation expert's work

Anecdotal evidence of 5 to 10 times speedup

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 27

Model-Based Development:
Modify the Model

model

model' app'

apptransformation

transformation

small modification

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 28

Model-Based Development:
Modify the Transformation (model)

model

model app'

apptransformation

small modification

transformation'

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 29

Transformation may be multi-step

� divide-and-conquer, modularity, . . .

� re-useexisting transformations, tools, . . .

� potential for optimization at every level

� multi-formalism modelling by transforming
onto a common formalism

� in case of Domain-Speci�c formalisms: usuallysmall
transformation onto known (syntax & semantics) formalism.

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 30

Formalism Transformation Graph

DEVS

Process Interaction
Discrete Event

state trajectory data (observation frame)

Petri Nets
Statecharts

scheduling-hybrid-DAE

Bond Graph a-causal

Bond Graph causal

DAE non-causal set

DAE causal set

PDE

Transfer Function

Difference Equations

System Dynamics

KTG
Cellular Automata

Event Scheduling
Discrete Event

3 Phase Approach
Discrete Event

DAE causal sequence (sorted)

DEVS&DESS

Activity Scanning
Discrete Event

Timed Automata

Causal Block Diagram

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 31

Building DS(V)M Tools E�ectively . . .

� development cost of DS(V)M Tools may be prohibitive !

� we want to e�ectively (rapidly, correctly, re-usably, . . .)

1. Specify DS(V)Lsyntax:

{ abstract) meta-modelling
{ concrete (textual/visual)

2. Specify DS(V)Lsemantics:
transformation

3. Model (and analyze and execute) modeltransformations :
) graph rewriting

) model everything
(in the most appropriate formalism,

at the appropriate level of abstraction)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 32

Dissecting a Modelling Language
(tool builder's view)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 33

Deciding on terminology

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 34

What's in a name ? Language

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 35

What's in a name ? Formalism

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 36

What's in a name ? Base Formalism

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 37

What's in a name ? Concrete Language

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 38

What's in a name ? Concrete Formalism

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 39

From now on: use AToM 3

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 40

A model in the PacMan Formalism
0Your score

(thanks to Reiko Heckel)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 41

Meta-modelling

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 42

Modelling Abstract Syntax (meta-model)

Cardinalities:
 - To gridBottomV3: 0 to N
 - From gridBottomV3: 0 to N
 - From pacLinkV3: 0 to N
 - From foodLinkV3: 0 to N
 - From scoreLinkV3: 0 to N
 - To gridLeftV3: 0 to N
 - From gridLeftV3: 0 to N
 - To gridRightV3: 0 to N
 - From gridRightV3: 0 to N
 - To gridTopV3: 0 to N
 - From gridTopV3: 0 to N
 - From ghostLinkV3: 0 to N

gridNodeCenter

Cardinalities:
 - To pacLinkV3: 0 to N

pacmanV3

Cardinalities:
 - To foodLinkV3: 0 to N

pacFoodV3

Attributes:
 - score :: Integer
Actions:
 > create
Cardinalities:
 - To scoreLinkV3: 0 to N

ScoreBoard

Cardinalities:
 - To ghostLinkV3: 0 to N

ghostV3

gridLeftV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridTopV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridBottomV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridRightV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

ghostLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From ghostV3: 0 to N

scoreLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From ScoreBoard: 0 to N

pacLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From pacmanV3: 0 to N

foodLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From pacFoodV3: 0 to N

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 43

Modelling the Scoreboard Entity

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 44

Synthesis of Code from this Design model
class ScoreBoard(ASGNode, ATOM3Type):

def __init__(self, parent = None):
ASGNode.__init__(self)
ATOM3Type.__init__(self)
self.graphClass_ = graph_ScoreBoard
self.isGraphObjectVisual = True
self.parent = parent
self.score=ATOM3Integer(0)
self.generatedAttributes = {'score': ('ATOM3Integer') }
self.directEditing = [1]

def clone(self):
cloneObject = ScoreBoard(self.parent)
for atr in self.realOrder:

cloneObject.setAttrValue(atr, self.getAttrValue(atr) .clone())
ASGNode.cloneActions(self, cloneObject)
return cloneObject

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 45

Syntax Directed Editing (vs. Freehand)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 46

Meta-modelling: model-instance morphism

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 47

Meta-meta-. . . : Meta-circularity

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 48

Adding to Abstract Syntax . . .

Cardinalities:
 - To gridBottomV3: 0 to N
 - From gridBottomV3: 0 to N
 - From pacLinkV3: 0 to N
 - From foodLinkV3: 0 to N
 - From scoreLinkV3: 0 to N
 - To gridLeftV3: 0 to N
 - From gridLeftV3: 0 to N
 - To gridRightV3: 0 to N
 - From gridRightV3: 0 to N
 - To gridTopV3: 0 to N
 - From gridTopV3: 0 to N
 - From ghostLinkV3: 0 to N

gridNodeCenter

Cardinalities:
 - To pacLinkV3: 0 to N

pacmanV3

Cardinalities:
 - To foodLinkV3: 0 to N

pacFoodV3

Attributes:
 - score :: Integer
Actions:
 > create
Cardinalities:
 - To scoreLinkV3: 0 to N

ScoreBoard

Cardinalities:
 - To ghostLinkV3: 0 to N

ghostV3

gridLeftV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridTopV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridBottomV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridRightV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

ghostLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From ghostV3: 0 to N

scoreLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From ScoreBoard: 0 to N

pacLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From pacmanV3: 0 to N

foodLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From pacFoodV3: 0 to N

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 49

Modelling Ghost Concrete Visual Syntax

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 50

Adding to Abstract Syntax . . .

Cardinalities:
 - To gridBottomV3: 0 to N
 - From gridBottomV3: 0 to N
 - From pacLinkV3: 0 to N
 - From foodLinkV3: 0 to N
 - From scoreLinkV3: 0 to N
 - To gridLeftV3: 0 to N
 - From gridLeftV3: 0 to N
 - To gridRightV3: 0 to N
 - From gridRightV3: 0 to N
 - To gridTopV3: 0 to N
 - From gridTopV3: 0 to N
 - From ghostLinkV3: 0 to N

gridNodeCenter

Cardinalities:
 - To pacLinkV3: 0 to N

pacmanV3

Cardinalities:
 - To foodLinkV3: 0 to N

pacFoodV3

Attributes:
 - score :: Integer
Actions:
 > create
Cardinalities:
 - To scoreLinkV3: 0 to N

ScoreBoard

Cardinalities:
 - To ghostLinkV3: 0 to N

ghostV3

gridLeftV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridTopV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridBottomV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridRightV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

ghostLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From ghostV3: 0 to N

scoreLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From ScoreBoard: 0 to N

pacLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From pacmanV3: 0 to N

foodLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From pacFoodV3: 0 to N

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 51

GhostLink Concrete Visual Syntax
Get n1, n2 end-points of the link
n1 = self.in_connections_[0]
n2 = self.out_connections_[0]

g1 and g2 are the graphEntity visual objects
g0 = self.graphObject_ # the link
g1 = n1.graphObject_ # first end-point
g2 = n2.graphObject_ # second end-poing

Get the high level constraint helper and solver
from Qoca.atom3constraints.OffsetConstraints import Of fsetConstraints
oc = OffsetConstraints(self.parent.qocaSolver)

The constraints
oc.CenterX((g1, g2, g0))
oc.CenterY((g1, g2, g0))
oc.resolve()

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 52

Synthesize + Customize Buttons model

New Edit New Help

New gridNodeCenter

New pacmanV3 New pacFoodV3 New ScoreBoardNew ghostV3

Note: createvs. execute

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 53

Default generated Buttons code for ghostV3

This method has as parameters:
- wherex : X Position in window coordinates where the user cl icked.
- wherey : Y Position in window coordinates where the user cl icked.
newPlace = self.createNewghostV3 (self, wherex, wherey)\ n'))

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 54

Can now build valid PacMan models ?
0Your score

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 55

Model the GUI's Reactive Behaviour !
in the Statechart formalism

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 56

The GUI's reactive behaviour in action

current work: �nd optimal formalism to specify GUI reactive behaviour

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 57

Specifying Model Transformations

What is the \optimal" formalism ?
Models are often graph-like) natural to express model transformation
by means ofgraph transformation models.

Ehrig, H., G. Engels, H.-J. Kreowski, and G. Rozenberg.
Handbook of graph grammars and computing by graph
transformation.
1999. World Scienti�c.

Tools:

GME/GReAT, PROGRES, Fujaba, AGG, AToM3, GROOVE, . . .
First three used in large industrial applications.

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 58

Modellling PacMan Operational Semantics
using Graph Grammar models

note: for Denotational Semantics: map for example onto Petri Net

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 59

Model Operational Semantics using GG

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 60

PacMan Die rule

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 61

PacMan Die rule LHS

2

4

1

3

5

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 62

PacMan Die rule RHS

1

3

5

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 63

PacMan Eat rule LHS

2

5

1

3

4

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 64

PacMan Eat rule RHS

2

5

1

scoreBoard = None
scoreBoards = atom3i.ASGroot.listNodes['ScoreBoard']
if (not scoreBoards):

return
else:

scoreBoard = scoreBoards[0]
scoreVal = scoreBoard.score.getValue()
scoreBoard.score.setValue(scoreVal+1)
scoreBoard.graphObject_.ModifyAttribute('score',sco reVal+1)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 65

PacMan Move rule LHS

7

8

6 9

10

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 66

PacMan Move rule RHS

7

1

6 9

10

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 67

Specifying/Executing Trsf. with GGs
(+) Models are often Graph-like

(+) Visual speci�cation (documentation)
For insight/debugging: execution + visual display
For performance: execution on data structures in memory

(+) Little or no programming knowledge required (allows
understanding/modi�cation by domain-experts)

(-) Does it scale up ?
Yes, need to use modular GGs (e.g., GReAT, PROGRES)

(-) Performance is bad ! (due to sub-graph matching)
But sometimes no alternative
{ model transformation for graph-like models
{ don't want to code matching yourself
But give (domain-speci�c) hints to kernel (or compile)
But use as speci�cation for manual implementation
{ executable speci�cation = reference implementation
{ automatic generation of unit tests
(including expected correct result)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 68

Modular Graph Rewriting,
graft on DEVS (AGTIVE)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 69

Modular Graph Rewriting: emulate priorities

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 70

Model Based Development:
some Open Problems

1. deal with concrete syntax (arbitrary mix of textual, visual) in a uni�ed manner

2. deal with legacy models (code)

3. trace-ability (backward links)

4. consistency (TGGs + modularity)

5. (meta-) model evolution

6. multi-formalism modelling

7. multi-view modelling, (semantic) consistency

8. model re�nement

9. design space exploration

10. automated testing (of models and model transformations)

11. transformation models are �rst-class models)
higher-order transformation

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 71

Conclusions
1. Through anecdotal evidence, demonstrated the usefulness of

(Computer Automated) (Domain-Speci�c) Multi-Paradigm
Modelling .

2. Demonstratedfeasibility of rapidly and re-usably building
Domain-Speci�c Visual Modelling, Analysis, Simulation tools
usingmeta-modelling and graph rewriting .

3. Many problems have been solved, but . . .

4. Still manyopen research problems
(good news for researchers, challenge for industry) !

model everything !

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 72

